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ABSTRACT

It is shown that the simple Palmgren-Mincr linear

cumulative damage rule is a snecial case of a gen-

eral cumulative damage theory previously established.

Predictions or lifetimes for families of multistage

loadings according to the Palmgren-Miner rule and the

general cumulative damage theory are compared with the

aim or arriving at qualitative guidelines for applica-

bility of the Palmgren-Miner rule in cyclic loading

programs. A-,1*11 for

NTIS t'
ON .. a.. i. . .

Visiting Professor -- Department of Materials Science
and Engineering, University of Pennsylvania, Philadel-
phia, Pennsylvania 19104, U.S.A.



- • •rodeucti on

The .simplest and most well known assumption for determination

of fatigue lifetime under variable amplitude cyclic loading is due

to Palmgren [11 and Minor [2]. Mathematically it is,:,expressed by

the statement

k n

k

where the amplitudes of cycling arc piccewise constant with kth

amplitulde Ik' and number of cycles nk, and N(a.) is the lifetime

for constant amplitude ak cycling.

klu. (1.1) is easily interpreted for the case where the cycli.

amplitude is a continuous function a(n) of the number of elapsed

cycles n. In that case (1.1) becomes

Ou

f (1.2)

0o

where ni(uij is the inverse of a(n), an is the initial amplitude and

(I is the amplitude at failure. The lifetime nu is then given by

n- u (au) (1.3)

provided that (1.3) is a single valued function.

In the following the assumption (1.1) shall be referred to as

the PM rule. It has first been stated in (1) and has been reintro-

duced in (21 on the basis of some physical assumptions. Other inter-

pretations in terms of assumed crack growth regimes have been given

in the literature. See e.g. [3). The chief criticisms of (1.1)



are that it ignores sequence of loading effects and that the only

material information used is the S-N curve, thus fatigue failure

information under constant amplitude only. However, the PM rule

does agree with experimental data in certain cases but is also very

inaccurate in others.

It is the purpose of the present work to show that (1.1) is

a very special case of a general theory of fatigue lifetimd,_pred:i-

tion, i.e., cumulative damage theory, and to examine some resulting

consequencesf .

It should, however, he emphasized that the theories of cumula-

tive damage here considered are of deterministic nature. In com-

parison of the results of such theories to the usual significantly

scattered test results there arises the fundamental question: What

is the experimental interpretation of a deterministically predicted

lifetime? is it the average of the scattered lifetimes under iden-

tical cyclic loading programs or is it some other associated statis-

tical parameter? To the writer's knowledge a satisfactory answer

to these questions is not available.

2. Resume of Cumulative Damage Theory

For present purposes it is necessary to give a brief summary

of the cumulative damage theory developed in [4] for prediction of

fatigue lifetime under general cyclic loading programs.

It is assumed that there is available a family of "identical"

specimens. Each of these specimens is cycled to failure in a two

stage loading. The first stages of all of the two stage loadings

are identically n 1 cycles at stress amplitude al. The second stages

arc at different amplitudes aj with residual lifetimes njr. The



S3-
n are plotted starting from the S-N curve of the material hori-

j

zonLally to the left at ordinates a.. The resulting locus
NJ

is defined as the damage curve through n, fig. 1.

The following properties of damage curves have been established

in [41:

"1. A damage curve is uniquely defined by one of its

points. This is based on an equivalent loading

postulate which will be explained further below.

2. All damage curves pass through the static ultimate

point 0, a

3. Damage curves do not intersect the n or a axes, except at 0, a .

4. Damage curves do not intersect (if the maverial is

such that additional cycling reduces the residual

lifetime) except at static ultimate point and

fatigue limit.

It is thus seen that the damage curves form a family of curves

which cover the region bounded by the n,o axes and the S-N curve.

The actual shape of the damage curves is not known. But since the

S-N curve is a special case of the damage curves (one stage loading;

residual lifetime in second stage vanishes) it is perhaps not unrea-

sonable to assume that the damage curves are expressed by a similar

mathematical form as the S-N curve, [4]. Thus if the S-N curve is

represented as

s = f( , rt) (2.1)

r'

i i I I I i i l f II l Ii IiI I lil I I
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where s is a nondimensional stress a/la and r is a curve fitting

parameter, then the damage curves are represented by the one para-

meter family

s - f(y, n) (2.2)

where Y is a parameter which changes from curve to curve. ft is

of course possible to represent damage curves by a family with

more than one parameter.

Many S-N curves can be adequately represented by straight

lines in semi-log or log-log coordinates. Thus

s w 1 + F log n semi-log (a) (2.3)
log s - r log n log-log (b)

SIn that case it follows from (2.1.2) that the damage curve families

have the forms

s - 1 + Y log n (a) (2.4)

log s - Y log n (b)

where Y is determined by the coordinates of any point on the damage
S~curve.

The behavior of the damage curves in the neighborhood of a

fatigue limit is not clear at the present time. Let the fatigue

limit stress be denoted oe and consider two stage loadings with

first stage a1 > ae for n1 cycles and second stage ae. If a spec-

imen is cycled at constant level ae the lifetime will, by definition

of the fatigue limit, be infinite (that is, longer than maximum

acceptable cycling time). For the two stage loading described

"r it is quite possible to have finite lifetime at ae which is more-

a
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over a decreasing function of a1 and n1 . It is also reasonable

to assume that for any High-Low two stage loading, with first stage

S1 for n 1  cycles , there will exist a fatigue limit oe((0 , n1 ) wh ich

is a decreasing function of a1 and n1 . If there is made the sim-

plifying assumption that ae - a then all damage curves which

represent the two stage loading described above must terminate at

stress level ae. If the S-N curve is a straight line in semi-log

or log-log coordinates, the fatigue limit is represented by a break

in the S-N straight line, fig. 2. If the damage curves are assumed

linear in semi-log or log-log representation then they must Lonverge

into the fatigue limit point n - Ne, se ae la s, fig. 2. The equa-

tions of these straight lines are given by

s - e - y log (R-) semi-log (a)
ne (2.5)

log (s/s M Y log (n) log-log (b)
e

It is to be expected that (2.4) will approximate the damage

curves in the neighborhood of the static ultimate point n-0; s-1

while (2.5) will approximate them in the neighborhood of the fatigue

limit. It is of course possible to construct nonlinear damage

curves which will be tangent to the two sets of straight lines at

static ultimate and fatigue limit but this subject will not be

considered here.

The damage curves determine,by definition, lifetimes under all

two stage loadings. It has been shown in 14) that lifetime under

any cyclic loading program can be determined on the basis of the

damage curves if it is assumed that specimens obey an equivalent

loading postulate. To explain this postulate it is first necessary

• -- -• l t i i H i
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to define equivalent cyclic loadings: Consider any variable ampli-

tude loading program which terminates before failure occurs. Sub-

sequently, the specimen is subjected to constant amplitude cycling-

to-failure at some stress level, s1. The residual lifetime under

rr
s 1 cycling is nr(s). Among the infinity of possible loading programs

1 4

there must necessarily be some which have the same n (s ). Such

loading programs are defined as equivalent cyclic loadings with

respect to s1. In conventional terms, equivalent loading means

that specimens have "suffered the same amount of damage". This

vague statement has, here, been precisely expressed in terms of

equal residual lifetime under subsequent constant amplitude loading.

Since the stress level, sl, is arbitrary it is reasonable to

believe that if the subsequent constant amplitude is s instead of

Sresidual lifetimes w ill be the same nr(s)#nr (s 1 ) for the cyclic

loading programs equivalent with respect to s . Hence the equivalent

loading poatulate is stated as: cyclic loadings which are equivalent

for one stress level are equivalent for all stress levels.

This postulate is schematically illustrated in fig. 3. The

plots show variations of nondimensional amplitude of cyclic loadings.

The loadings are equivalent for amplitude s1 since n r(s) are the

same. The equivalent loading postulate then asserts that they are

equivalent for s2 implying that n2r are the same and similarly for

any other constant s cycling.

Residual lifetimes in two stage loadings are determined by the

damage curves, in view of their definition. For a piecewise con-

stant amplitude (multistage) loading the analysis procedure for

residual lifetime is shown in fig. 4. First loading stage, n 1

cycles at s1 amplitude, is traced in the S-N plane by the horizontal
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segment n 1 at sL. For next stage, n2 cycles at s amplitide, pro-

ceed on damage curve through nl,s 1 until level s 2 and then advance

n 2 horizontally. This is repeated for the various loading stages

until the S-N curve is reached. The sum of the n n then

defines the lifetime under the multistage loading program.

Now let the cyclic loading have a continuously variable ampli-

tude defined by

s - s(i)
(2.6)

n - is

The damage curve equation (2.2) is written in the alternative forms

n - g(y, s)
(2.7)

y - y(n, s)

In order to find the amplitude su at which failure occurs under the

cyclic loading (2.6) i t is necessary to solve the differential

equation

dn (y, s)L + I'(s) (2.8)
2FS -as

y-y(n, s)

with initial condition

s(O) 0 o 2.9)

where s, is the initial amplitude of (2.6). The solution of (..8)

defines a curve s(n) in the s-n plane which intersects the S-N

curve at failure amplitude su. The lifetime nfu is then given from

(2.6.b) by

ik f_ _



nu - su) (2.10)

All of this presupposes that (2.6) are single valued functions.

If this is not the case the multivalued function must be separated

into single valued branches and the integrations must be carried

out separately and successively for the various branches.

Various cases of multistage and continuous cycl'c loadings

have been treatted in (4] on the basis of the damage curves (2.4)

and (2.5).

3. Palmgren-Miner Cumulative Damage

The PM assumption will now be examined on the basis of the general

cumulative damage theory summarized above. To construct the damage

curves let a specimen be subjected to a two stage loading ni cycles

at amplitude s1 and then nr cycles to failure at amplitude s. Accor-

ding to the PM assumption

n r
1 + n

and from fig. 1

nr N -n (3.2)

Combination of (3.1) and (",.2) yields

n 1 .const - Y (3.3)

Thus the equation of the damage curves is

n(s) - y N(s) 0 < y < 1 (3.4)

where N(s) is the equation of the S-N curve, y=1 corresponds to the

-(- --- --
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S-N curve and Y=0 corresponds to the s axis. The value of Y for

any damage curve is determined in terms of the coordinates of a

point through which it passes by (3.3).

Two stage loadings do not in general obey the PM assumption.

The following trends have been observed in metal fatigue

n n: > when sI < s2 Low-High

2 < 1 when s > s H igh-Low (

The condition (3.5) has interesting implications for the damage

curves. Writing the left side of (3.5) in terms of the substitution

(3.2) for n 2 it follows at once that

n(s 1 ) n(s 2) (3.6)

I
In words: the necessary and sufficient condition to fulfill (3.5)

is for n(s)/N(s) to be a monotonically decreasing function of s.

In differential form

which can be reduced to

[log n(s)) < j [log N(s)] (3.7)

If the inequalities (3.5) are reversed, which has been found

to be the case in some fiber composite testing, then the inequalities

(3.6) and (3.7) also reverse. (3.6-7) become equalities if, and only

if, the PM assumption is valid. It is easily seen that the logarithmic

linear damage curves (2.4) obey inequalities in the opposite sense to

j
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(3.5) and while the other kind which converge into the fatigue

limit obey (3.5). Indeed it has been found,[4],that two stage

fatigue life tests for steel are in good agreement with predictions

based on (2.5).

Next the case of multistage loadings is considered. Refer-

ring to fig. 4 the damage curves needed are numbered consecutively.

The abscissa of a point with ordinate s. on the ith damage curve

will be denoted nij. Suppose the loading consists of the three

stages n1 cycles at amplitude se, n2 at s2 and n 3 to failure at s3.

It is required to find s3. The procedure is indicated in fig. 4.

The equation of damage curve 1 is

nn 1

It follows that

n nm n
nN(s 2  N2  n2 2  N 2 2

The equation of damage curve 2 is

n n22
~'2

It follows that

n n 22 Ns n 22 N÷ n23 N(s 3 ) 3 N3  n 3 3 * n 2 3  3

Failure at amplitude s3 cycling occurs when the S-N curve is reached

at that level, i.e., when

n 3 3  N3  (3.8)

Combining (3.8) with the preceding relations it follows easily that



n n n1 + + 3
1 N2 N3

which is the PM assumption for a three stage loading. It is not

difficult to show (by induction) that by this procedure failure in

a general multistage loading will be predicted by (1.1).

It should be carefully noted that the PM assumption has been

here adopted only for two stage loadings, whereby the form of the
damage curves was determined. The procedure for multistage loading

analysis in terms of the damage curves is based on the equivalent

loading postulate which refers to any damage curves.

The case of continuous amplitude variation is governed by the

differential equation (2.9). Analytical integration of this equa-

tion does not seem feasible in general. Even with the simple

damage curves (2.4) integration could only be carried out numeri-

cally, (4]. The situation is however different in the case of the

PM damage curves (3.4). In the presert case (2.7) are given by

(3.4) and (3.3). It follows that (2.8) assumes the form

dn . ÷ fi'(s) (3.9)

where a prime denot'-s differentiation. It is easily verified that

the solution of (3.9) is

S

n(s) - N(s) (3.10)

so

Failure is defined by the intersection of n(s) with the S-N

curve N(s), i.e., when n(s) - N(s). Thus for failure
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Su

n(a)d -1 (3.11)

It is easily seen that (3.11) is the same as (1.2), the continuous

amplitude variation version of the PM assumption.

The left sides of (1.1) and (1.2) may be termed the PM coef-

ficient. Recall the inequalities (3.5) for this coefficient for

two stage loading and their relations (3.6-7) to the damage curves.

It is not difficult to show that (3.6-7) also imply that the gen-

eral PM coefficient obeys inequalities (3.5) and also reversed

inequalities (3.6-7) for reversed inequalities (3.5).

Experience accumulated over many years has shown that the PM

rule sometimes predicts fatigue life with sufficient engineering

accuracy while at other times it is very much in error. To the

writer's knowledge no criteria for acceptability or inacceptibility

of this rule are available.

In the course of present research, concerning the new cumulative

damage theory, fatigue life predictions have been performed for vari-

ous cyclic loadings on the basis of assumed linear damage curves

(2.4) and (2.5). It has been found that (2.5) are more appropriate

for metals. For two stage loadings there results the simple formula

(nlog(NN2/Ne)/log(N /Ne) n n 2+ N-2  1 (3.12)

where Ne is lifetime at se, the fatigue limit, as determined by the

S-N curve. It has been found 14) that (3.12) is in much better agree-

ment with steel test data than the PM rule.

i! n -1 $ u1[ l - I | I l I d - I l Ill
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It is of considerable interest to have some general assess-

ment of the expected differences between lifetime prediction as

given by the PM rule and the much more general cumulative damage

theory of [4]. While such general assessment is not available

at the present time the following example will perhaps serve to

establish trends.

Consider a multistage loading program composed of m stages,

r. cycles at amplitude sk. The amplitudes increase or decrease

monotonically in the interval from initial value sI to final value

sm, fig. 5.

A procedure for lifetime prediction under multistage loading

has been given in [4]. This will here be summarized in a modified

form. Define the recurrence relations

n' i-
: 1

2~ n~ 2112 = Ill + R--
2

nk
Wk = Pk-l + Nk (3.13)

where

n k -- the number of cycles with amplitudes sk in

kth stage,

Nk=N(sk) -- lifetime at sk from S-N curve,

-- functions of stress amplitude defined by the form

of damage curves.

Then failure is predicted by

"k= 1 (3.14j
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Choosing the damage curves in the form (2.Sa), that is semi-

leg linear through fatigue limit, the functions 4k assume the form

'ck Sk "e (3.15)

It is noted in passing that for damage curves (2.5b)

= log(sk/se) (3.16)

If s in (3.15-16) are expressed in terms of Nk from the S-N curves

(2.3) then in both cases

Ck log(Nk/Ne)
k l log(N k 1/Ne) 

(3.17)

Equ. (3.12) for two stage loading is a special case of (3.13) with

(3.17).

It is easily seen that the PM rule is obtained as a special

case of (3.13-14) when hkaconst.

Numerical computations have been carried out for ascending

stair case loadings and their descending reverses, with initial

and final amplitudes

s =0.3 s - 0.71 m

s a 0.7 sm = 0.3

In all cases

se = 0.2 Fr --o 1

where r refers to S-N curve (2.3a), and

s m S 1k- sk-1 A As const m (3.18)
Sm *
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In the first set of computations it was assumed that nk=n=const.

If a number of stages m is chosen the number of cycles n per stage

then becomes the unknown to be determined from (3.13-15). It was

found that for these cases the predictions agreed closely with the

PM rule. Therefore, introducing (3.18) into (1.1) a good approxi-

mation is

nk1 Nk (3.19)

In the second set of computations it was assumed that

nk - ONk (3.20)

where 0 v const. In this case the unknown for given number of stages

is 8, which is found numerically by satisfaction of (3.14). Once

B is known the lifetime under given program is the sum of ONk over

all stress values.

The results of the computations are shown in fig. 6 as ratio

of lifetime defined by (3.20) to lifetime predicted by the PM rule.

Note that according to the latter

1
8PM m

It easily follows that the ratio plotted in fig. 6 is simply

OPM

It is seen that there is substantial disagreement with prediction

of the PM rule. Also loading sequence reversal produces substantial

changes in lifetime as is seen by the difference between ascending
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and descending loading program lifetimes.

The differences in agreement with the PM rule in the different

loadings are not difficult to explain. In the first case the

number of cycles is the same for each stress level. Therefore the

damage produced at different stress levels is significant only for

the high stress levels. Roughly speaking the loading is equivalent

to constant cycling for a certain number of cycles at max stress

level of the loading. However for such (constant amplitude) loading

the PM rule is (trivially) valid.
d

In the second kind of loading the damages done at each stress

level are of similar magnitudes since the number of cycles in each

stage is proportional to the lifetime at the stage stress level.

Thus there is no reason to expect validity of the PM rule.

On the basis of the foregoing it may be speculated that the

PM rule will be adequate when the most of the "damage" is done at

roughly the same stress level. For a rough assessment the PM coef-

ficient (1.1) or (1.2) may be computed. If in (1.1) one of the

terms is dominant (larger than .9, say) or if in (1.2) the major

contribution to the integral comes from a narrow stress band then

it may be surmised that the PM rule would be an adequate approxima-

tion.

4. Conclusion

It has been shown that the well known Palmgren-Miner linear

cumulative damage rule is a special case of a general cumulative

damage theory. In this respect it should be noted that according

to present development it is necessary to assume validity of the PM

rule only for two stage loadings. Its validity for multistage



- 17 -

loadings then follows from a general equivalent loading postulate

which is assumed valid for any cumulative damage theory.

It has been shown by means of numerical examples that there are

classes of multistage loadings for which the general cumulative

damage theory and the PM rule are in close agreement while substan-

tial disagreement is found for others.

It must be emphasized again that all theories included here

are phenomenological and deterministic. The fit of any such theory

to test data is obscured by the significant scatter observed. It

is therefore most important to generalize the theory developed so

as to take into account the scatter of lifetime test data.
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